SEARCHES FOR MONOPOLES, SUPERSYMMETRY, TECHNICOLOR, COMPOSITENESS, EXTRA DIMENSIONS, etc.

Magnetic Monopole Searches

Isolated supermassive monopole candidate events have not been confirmed. The most sensitive experiments obtain negative results.

Best cosmic-ray supermassive monopole flux limit:

$$< 1.4 \times 10^{-16} \text{ cm}^{-2} \text{sr}^{-1} \text{s}^{-1}$$
 for $1.1 \times 10^{-4} < \beta < 1$

Supersymmetric Particle Searches

Presently all supersymmetric mass bounds are model dependent.

This table contains a selection of bounds indicating the range of possibilities. For a more extensive set of cases consult the detailed listings.

The limits are based on the Minimal Supersymmetric Standard Model (MSSM) with additional assumptions as follows:

1) $\tilde{\chi}_1^0$ is lightest supersymmetric particle; 2) *R*-parity is conserved;

See the Particle Listings for a Note giving details of supersymmetry.

$$\begin{array}{l} \widetilde{\chi}_{i}^{0} - \text{neutralinos (mixtures of } \widetilde{\gamma}, \ \widetilde{Z}^{0}, \ \text{and } \widetilde{H}_{i}^{0}) \\ \text{Mass } m_{\widetilde{\chi}_{1}^{0}} > 0 \ \text{GeV, CL} = 95\% \\ \text{[general MSSM, non-universal gaugino masses]} \\ \text{Mass } m_{\widetilde{\chi}_{1}^{0}} > 46 \ \text{GeV, CL} = 95\% \\ \text{[all } \tan\beta, \ \text{all } m_{0}, \ \text{all } m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}}] \\ \text{Mass } m_{\widetilde{\chi}_{2}^{0}} > 62.4 \ \text{GeV, CL} = 95\% \\ \text{[1<$} \tan\beta < 40, \ \text{all } m_{0}, \ \text{all } m_{\widetilde{\chi}_{2}^{0}} - m_{\widetilde{\chi}_{1}^{0}}] \\ \text{Mass } m_{\widetilde{\chi}_{2}^{0}} > 345 \ \text{GeV, CL} = 95\% \\ \text{[$\widetilde{\chi}_{1}^{\pm} \ \widetilde{\chi}_{2}^{0} \rightarrow \ W \ \widetilde{\chi}_{1}^{0} \ Z \ \widetilde{\chi}_{1}^{0}, \ \text{simplified model, } m_{\widetilde{\chi}_{1}^{\pm}} = m_{\widetilde{\chi}_{2}^{0}}, \ m_{\widetilde{\chi}_{1}^{0}} = 0 \ \text{GeV}] \\ \end{array}$$

Citation: C. Patrignani et al. (Particle Data Group), Chin. Phys. C, 40, 100001 (2016)

Mass
$$m_{\widetilde{\chi}^0_3} > 99.9$$
 GeV, $\mathsf{CL} = 95\%$

$$m_{\widetilde{\chi}_3^0} > 35.3 \text{ GeV}, \text{ CL} = 33.6$$
 [1 $<$ tan $eta <$ 40, all m_0 , all $m_{\widetilde{\chi}_2^0} - m_{\widetilde{\chi}_1^0}$]

Mass
$$m_{\widetilde{\chi}_4^0} > 116$$
 GeV, CL = 95%

[1
$$<$$
tan eta $<$ 40, all m_0 , all $m_{\widetilde{\chi}^0_2} - m_{\widetilde{\chi}^0_1}$]

$$\widetilde{\chi}_i^\pm$$
 — charginos (mixtures of \widetilde{W}^\pm and \widetilde{H}_i^\pm)

Mass $m_{\widetilde{\chi}_1^\pm} > 94$ GeV, CL $= 95\%$

$$[aneta<40,\ m_{\widetilde{\chi}_1^\pm}-m_{\widetilde{\chi}_1^0}>3\ ext{GeV},\ ext{all}\ m_0]$$

Mass
$$m_{\widetilde{\chi}_1^{\pm}} > 345$$
 GeV, CL = 95%

[simplified model,
$$m_{\widetilde{\chi}_1^\pm}=m_{\widetilde{\chi}_2^0}$$
, $m_{\widetilde{\chi}_1^0}=0$ GeV]

$$\widetilde{\nu}$$
 — sneutrino

Mass
$$m>94$$
 GeV, CL $=95\%$ [CMSSM, $1\leq \tan\beta \leq 40$, $m_{\widetilde{e}_R}-m_{\widetilde{\chi}_1^0}>10$ GeV]

[CMSSM,
$$1 \leq \tan \beta \leq 40$$
, $m_{\widetilde{e}_R} - m_{\widetilde{\chi}_1^0} > 10$ GeV]

$$\widetilde{e}$$
 — scalar electron (selectron)

Mass
$$m(\widetilde{e}_L)>107$$
 GeV, CL $=95\%$ [all $m_{\widetilde{e}_R}-m_{\widetilde{\chi}_1^0}$] Mass $m(\widetilde{e}_R)>97.5$ GeV, CL $=95\%$ [$\Delta m>11$ GeV, $|\mu|>100$ GeV, $\tan\beta=1.5$]

$$\widetilde{\mu}$$
 — scalar muon (smuon)
Mass $m>~94$ GeV, CL $=95\%$

[CMSSM,
$$1 \leq aneta \leq 40$$
, $m_{\widetilde{\mu}_R} - m_{\widetilde{\chi}^0_1} > 10$ GeV]

$$\widetilde{ au}$$
 — scalar tau (stau)
Mass $m>81.9$ GeV, CL $=95\%$

$$[m_{\widetilde au_R}-m_{\widetilde\chi^0_1}$$
 >15 GeV, all $heta_ au$, B $(\widetilde au o$ $au\,\widetilde\chi^0_1)=$ 100%]

$$\chi_1^0$$
 > 25 331, 21 δ_{γ} , 2(...

$$\widetilde{q}$$
 – squarks of the first two quark generations

The first of these limits is within CMSSM with cascade decays, evaluated assuming a fixed value of the parameters
$$\mu$$
 and $\tan \beta$. The first two limits assume two-generations of mass degenerate squarks (\tilde{q}_{μ} and \tilde{q}_{μ}) and gaus

assume two-generations of mass degenerate squarks $(\widetilde{q}_L \text{ and } \widetilde{q}_R)$ and gaugino mass parameters that are constrained by the unification condition at the grand unification scale. The third limit assumes a simplified model with a

100% branching ratio for the prompt decay $\widetilde{q} \rightarrow q \widetilde{\chi}_1^0$. Mass m > 1450 GeV, CL = 95%

[CMSSM,
$$tan\beta = 30$$
, $A_0 = -2max(m_0, m_{1/2})$, $\mu > 0$]

Mass
$$m>850$$
 GeV, CL $=95\%$
[jets $+\cancel{E}_T$, $\widetilde{q}\to q\widetilde{\chi}^0_1$ simplified model, $m_{\widetilde{\chi}^0_1}=0$ GeV]

Mass
$$m>520$$
 GeV, CL $=95\%$ $[\widetilde{q}\to q\widetilde{\chi}^0_1, \text{ simplified model, single light squark, } m_{\widetilde{\chi}^0_1}=0]$

$$\widetilde{b}$$
 — scalar bottom (sbottom)

Mass $m > 650$ GeV, CL = 95% $[\widetilde{b} \rightarrow b\widetilde{\chi}_1^0, m_{\widetilde{\chi}_1^0} = 0]$

Mass $m > 600$ GeV, CL = 95% $[\widetilde{b} \rightarrow b\widetilde{\chi}_1^0, m_{\widetilde{\chi}_1^0} < 250$ GeV]

 \widetilde{t} — scalar top (stop)

Mass $m > 730$ GeV, CL = 95%

$$\begin{split} & [\widetilde{t} \to t \, \widetilde{\chi}_1^0, \, m_{\widetilde{\chi}_1^0} = 100 \, \text{GeV}, \, m_{\widetilde{t}} > m_t + m_{\widetilde{\chi}_1^0}] \\ & \text{Mass } m > 500 \, \text{GeV}, \, \text{CL} = 95\% \\ & [\ell^\pm + \text{jets} + \not\!\!E_T, \, \widetilde{t}_1 \to \, b \, \widetilde{\chi}_1^\pm, \, m_{\widetilde{\chi}_1^\pm} = 2 \, m_{\widetilde{\chi}_1^0}, \, 100 \, \, \text{GeV} < m_{\widetilde{\chi}_1^0} \, < 150 \end{split}$$

GeV] Mass
$$m > 240$$
 GeV, $CL = 95\%$

Mass
$$m > 240$$
 GeV, $CL = 95\%$

$$[\widetilde{t}_1 \rightarrow c \widetilde{\chi}_1^0, m_{\widetilde{t}_1} - m_{\widetilde{\chi}_1^0} < 85 \text{ GeV}]$$

$$\widetilde{g}$$
 — gluino

the prompt 3 body decay, independent of the squark mass. The second of these limits is within the CMSSM (for $m_{\widetilde{g}} \gtrsim 5$ GeV), and includes the effects of cascade decays, evaluated assuming a fixed value of the parameters μ and $tan\beta$. The limit assumes GUT relations between gaugino masses and the gauge couplings. The third limit is based on a combination of searches.

The first limit assumes a simplified model with a 100% branching ratio for

Mass
$$m>1225$$
 GeV, CL $=95\%$ $[\widetilde{g}\to q\overline{q}\widetilde{\chi}_1^0,\ m_{\widetilde{\chi}_1^0}=0]$ Mass $m>1150$ GeV, CL $=95\%$

[CMSSM,
$$\tan\beta$$
=30, A_0 = $-2\max(m_0,m_{1/2})$, $\mu>0$] Mass $m>1150$ GeV, CL = 95%

[general RPC
$$\tilde{g}$$
 decays, $m_{\approx 0}$ < 100 GeV

[general RPC \widetilde{g} decays, $m_{\widetilde{\chi}_1^0}$ < 100 GeV]

Technicolor

The limits for technicolor (and top-color) particles are quite varied depending on assumptions. See the Technicolor section of the full Review (the data listings).

Quark and Lepton Compositeness, Searches for

Scale Limits Λ for Contact Interactions (the lowest dimensional interactions with four fermions)

If the Lagrangian has the form

$$\pm \frac{g^2}{2\Lambda^2} \overline{\psi}_{\mathsf{L}} \gamma_{\mu} \psi_{\mathsf{L}} \overline{\psi}_{\mathsf{L}} \gamma^{\mu} \psi_{\mathsf{L}}$$

 $\Lambda_{II}^{+}(eeee) > 8.3 \text{ TeV}, CL = 95\%$

(with $g^2/4\pi$ set equal to 1), then we define $\Lambda \equiv \Lambda_{LL}^{\pm}$. For the full definitions and for other forms, see the Note in the Listings on Searches for Quark and Lepton Compositeness in the full *Review* and the original literature.

$$\Lambda_{LL}^{-}(eeee)$$
 > 10.3 TeV, CL = 95% $\Lambda_{LL}^{+}(ee\mu\mu)$ > 8.5 TeV, CL = 95% $\Lambda_{LL}^{-}(ee\mu\mu)$ > 9.5 TeV, CL = 95% $\Lambda_{LL}^{-}(ee\tau\tau)$ > 7.9 TeV, CL = 95% $\Lambda_{LL}^{-}(ee\tau\tau)$ > 7.2 TeV, CL = 95% $\Lambda_{LL}^{-}(ee\tau\tau)$ > 9.1 TeV, CL = 95% $\Lambda_{LL}^{-}(\ell\ell\ell\ell)$ > 9.1 TeV, CL = 95% $\Lambda_{LL}^{-}(\ell\ell\ell\ell)$ > 10.3 TeV, CL = 95% $\Lambda_{LL}^{-}(eeuu)$ > 23.3 TeV, CL = 95% $\Lambda_{LL}^{-}(eeuu)$ > 12.5 TeV, CL = 95% $\Lambda_{LL}^{-}(eedd)$ > 11.1 TeV, CL = 95% $\Lambda_{LL}^{-}(eedd)$ > 26.4 TeV, CL = 95% $\Lambda_{LL}^{-}(eecc)$ > 9.4 TeV, CL = 95% $\Lambda_{LL}^{-}(eebb)$ > 9.4 TeV, CL = 95% $\Lambda_{LL}^{-}(eebb)$ > 10.2 TeV, CL = 95% $\Lambda_{LL}^{-}(eebb)$ > 10.2 TeV, CL = 95% $\Lambda_{LL}^{-}(\mu\mu qq)$ > 16.7 TeV, CL = 95% $\Lambda_{LL}^{-}(\mu\mu qq)$ > 16.7 TeV, CL = 95% $\Lambda_{LL}^{-}(\mu\mu qq)$ > 2.81 TeV, CL = 95% $\Lambda_{LL}^{-}(qqqq)$ > 2.81 TeV, CL = 95% $\Lambda_{LL}^{-}(qqqq)$ > 12.0 TeV, CL = 95% $\Lambda_{LL}^{-}(qqqq)$ > 12.0 TeV, CL = 95% $\Lambda_{LL}^{-}(qqqq)$ > 12.0 TeV, CL = 95% $\Lambda_{LL}^{-}(\mu\nu qq)$ > 5.0 TeV, CL = 95% $\Lambda_{LL}^{-}(\nu\nu qq)$ > 5.4 TeV, CL = 95%

Excited Leptons

The limits from $\ell^{*+}\ell^{*-}$ do not depend on λ (where λ is the $\ell\ell^{*}$ transition coupling). The λ -dependent limits assume chiral coupling.

$$e^{*\pm}$$
 — excited electron

Mass
$$m > 103.2 \text{ GeV}$$
, $CL = 95\%$ (from $e^* e^*$)

Mass
$$m > 3.000 \times 10^3$$
 GeV, CL = 95% (from ee^*)
Mass $m > 356$ GeV, CL = 95% (if $\lambda_{\gamma} = 1$)

$$\mu^{*\pm}$$
 — excited muon

Mass
$$m>103.2$$
 GeV, CL = 95% (from $\mu^*\mu^*$)

Mass
$$m>~3.000 imes10^3$$
 GeV, CL $=95\%$ (from $\mu\mu^*$)

$$au^{*\pm}$$
 — excited tau

Mass
$$m > 103.2$$
 GeV, CL = 95% (from $\tau^* \tau^*$)
Mass $m > 2.500 \times 10^3$ GeV, CL = 95% (from $\tau \tau^*$)

$$\nu^*$$
 — excited neutrino

Mass
$$m>1.600\times 10^3$$
 GeV, CL $=95\%$ (from $\nu^*\nu^*$)

Mass
$$m > 1.000 \times 10^{\circ}$$
 GeV, $CL = 95\%$ (from $\nu^* X$)

Mass
$$m > 338 \text{ GeV}$$
, $CL = 95\%$ (from $q^* q^*$)

Mass
$$m > 4.060 \times 10^3$$
 GeV, $CL = 95\%$ (from $q^* X$)

Color Sextet and Octet Particles

Color Sextet Quarks
$$(q_6)$$

Mass
$$m>84$$
 GeV, $CL=95\%$ (Stable q_6)

Color Octet Charged Leptons
$$(\ell_8)$$

Mass
$$m > 86$$
 GeV, $CL = 95\%$ (Stable ℓ_8)

Color Octet Neutrinos (
$$\nu_8$$
)

Mass
$$m>~110$$
 GeV, $\mathsf{CL}=90\%~~(
u_8
ightarrow~
u_g)$

Extra Dimensions

Please refer to the Extra Dimensions section of the full *Review* for a discussion of the model-dependence of these bounds, and further constraints.

Constraints on the radius of the extra dimensions, for the case of two-flat dimensions of equal radii

$$R < 30 \ \mu \text{m}$$
, CL = 95% (direct tests of Newton's law)

$$R < 15 \ \mu \text{m}, \text{ CL} = 95\% \quad (pp \rightarrow jG)$$

$$R < 0.16-916$$
 nm (astrophysics; limits depend on technique and assumptions)

Constraints on the fundamental gravity scale

$$M_{TT}>$$
 6.3 TeV, CL $=95\%$ (pp \to dijet, angular distribution) $M_c>$ 4.16 TeV, CL $=95\%$ (pp \to $\ell \overline{\ell})$

Constraints on the Kaluza-Klein graviton in warped extra dimensions

$$M_G~>~2.73$$
 TeV, CL $=95\%~~(pp
ightarrow~e^+e^-,~\mu^+\mu^-)$

Constraints on the Kaluza-Klein gluon in warped extra dimensions

$$\mathit{M}_{\mathit{g}_{KK}}~>~2.5$$
 TeV, CL $=95\%~~(\mathit{g}_{KK}
ightarrow~t\,\overline{t})$